Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0271695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947624

RESUMO

Endoplasmic Reticulum (ER) stress, caused by the accumulation of misfolded proteins in the ER, elicits a homeostatic mechanism known as the Unfolded Protein Response (UPR). The UPR reprograms gene expression to promote adaptation to chronic ER stress. The UPR comprises an acute phase involving inhibition of bulk protein synthesis and a chronic phase of transcriptional induction coupled with the partial recovery of protein synthesis. However, the role of transcriptional regulation in the acute phase of the UPR is not well understood. Here we analyzed the fate of newly synthesized mRNA encoding the protective and homeostatic transcription factor X-box binding protein 1 (XBP1) during this acute phase. We have previously shown that global translational repression induced by the acute UPR was characterized by decreased translation and increased stability of XBP1 mRNA. We demonstrate here that this stabilization is independent of new transcription. In contrast, we show XBP1 mRNA newly synthesized during the acute phase accumulates with long poly(A) tails and escapes translational repression. Inhibition of newly synthesized RNA polyadenylation during the acute phase decreased cell survival with no effect in unstressed cells. Furthermore, during the chronic phase of the UPR, levels of XBP1 mRNA with long poly(A) tails decreased in a manner consistent with co-translational deadenylation. Finally, additional pro-survival, transcriptionally-induced mRNAs show similar regulation, supporting the broad significance of the pre-steady state UPR in translational control during ER stress. We conclude that the biphasic regulation of poly(A) tail length during the UPR represents a previously unrecognized pro-survival mechanism of mammalian gene regulation.


Assuntos
Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Mamíferos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686314

RESUMO

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Assuntos
Proliferação de Células , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Pressão Osmótica , Biossíntese de Proteínas , Ribossomos/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Códon de Iniciação , Fibroblastos/patologia , Células HEK293 , Humanos , Cinética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ribossomos/genética , Transdução de Sinais
4.
Mol Cell ; 81(11): 2275-2277, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34087179

RESUMO

Wan et al. (2021) establish a powerful new platform to measure the dynamics of transcription and splicing of endogenous genes in single cells in real time. Combining real-time measurements with multiple deep-sequencing tools reveals an unexpectedly high amount of spliceosome activity, prompting a reconsideration of current models of how introns are removed from pre-mRNA.


Assuntos
RNA , Spliceossomos , Íntrons/genética , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Nature ; 591(7848): 152-156, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568810

RESUMO

Gene expression in higher eukaryotic cells orchestrates interactions between thousands of RNA-binding proteins (RBPs) and tens of thousands of RNAs1. The kinetics by which RBPs bind to and dissociate from their RNA sites are critical for the coordination of cellular RNA-protein interactions2. However, these kinetic parameters have not been experimentally measured in cells. Here we show that time-resolved RNA-protein cross-linking with a pulsed femtosecond ultraviolet laser, followed by immunoprecipitation and high-throughput sequencing, allows the determination of binding and dissociation kinetics of the RBP DAZL for thousands of individual RNA-binding sites in cells. This kinetic cross-linking and immunoprecipitation (KIN-CLIP) approach reveals that DAZL resides at individual binding sites for time periods of only seconds or shorter, whereas the binding sites remain DAZL-free for markedly longer. The data also indicate that DAZL binds to many RNAs in clusters of multiple proximal sites. The effect of DAZL on mRNA levels and ribosome association correlates with the cumulative probability of DAZL binding in these clusters. Integrating kinetic data with mRNA features quantitatively connects DAZL-RNA binding to DAZL function. Our results show how kinetic parameters for RNA-protein interactions can be measured in cells, and how these data link RBP-RNA binding to the cellular function of RBPs.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Cinética , Lasers , Camundongos , Ligação Proteica , RNA/genética , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo
6.
J Biol Chem ; 295(33): 11707-11719, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32576660

RESUMO

The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas Repressoras/genética , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/patologia
7.
Wiley Interdiscip Rev RNA ; 11(1): e1565, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429211

RESUMO

RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Humanos , Cinética , RNA/genética , Proteínas de Ligação a RNA/genética
8.
Neuron ; 101(4): 707-720.e5, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30638744

RESUMO

RNA-binding proteins (RBPs) regulate genetic diversity, but the degree to which they do so in individual cell types in vivo is unknown. We developed NOVA2 cTag-crosslinking and immunoprecipitation (CLIP) to generate functional RBP-RNA maps from different neuronal populations in the mouse brain. Combining cell type datasets from Nova2-cTag and Nova2 conditional knockout mice revealed differential NOVA2 regulatory actions on alternative splicing (AS) on the same transcripts expressed in different neurons. This includes functional differences in transcripts expressed in cortical and cerebellar excitatory versus inhibitory neurons, where we find NOVA2 is required for, respectively, development of laminar structure, motor coordination, and synapse formation. We also find that NOVA2-regulated AS is coupled to NOVA2 regulation of intron retention in hundreds of transcripts, which can sequester the trans-acting splicing factor PTBP2. In summary, cTag-CLIP complements single-cell RNA sequencing (RNA-seq) studies by providing a means for understanding RNA regulation of functional cell diversity.


Assuntos
Processamento Alternativo , Antígenos de Neoplasias/genética , Cerebelo/embriologia , Córtex Cerebral/embriologia , Neurogênese , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Cerebelo/citologia , Cerebelo/fisiologia , Córtex Cerebral/citologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Antígeno Neuro-Oncológico Ventral , Neurônios/citologia , Neurônios/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Ligação a RNA/metabolismo
9.
Genesis ; 57(4): e23283, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663216

RESUMO

Spermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue-specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre-lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.


Assuntos
Citometria de Fluxo/métodos , Espermatozoides/citologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Espermatozoides/classificação , Espermatozoides/metabolismo
10.
Cell Rep ; 25(5): 1225-1240.e6, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380414

RESUMO

The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3' UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival.


Assuntos
Células Germinativas/citologia , Células Germinativas/metabolismo , Poli A/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Envelhecimento , Animais , Sequência de Bases , Sítios de Ligação , Ciclo Celular/genética , Sobrevivência Celular , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testículo/metabolismo , Transcrição Gênica , Transcriptoma/genética
11.
Nature ; 559(7712): 130-134, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950728

RESUMO

The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.


Assuntos
Regiões 5' não Traduzidas/genética , Códon de Iniciação/genética , RNA Helicases DEAD-box/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Reagentes de Ligações Cruzadas/química , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
12.
Nat Immunol ; 19(4): 354-365, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29563620

RESUMO

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine. mRNA-bound Act1 directs formation of three compartmentally distinct RNA-protein complexes (RNPs) that regulate three disparate events in inflammatory-mRNA metabolism: preventing mRNA decay in the nucleus, inhibiting mRNA decapping in P bodies and promoting translation. SBE RNA aptamers decreased IL-17-mediated mRNA stabilization in vitro, IL-17-induced skin inflammation and airway inflammation in a mouse asthma model, thus providing a therapeutic strategy for autoimmune diseases. These results reveal a network in which Act1 assembles RNPs on the 3' UTRs of select mRNAs and consequently controls receptor-mediated mRNA stabilization and translation during inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inflamação/imunologia , Interleucina-17/metabolismo , Estabilidade de RNA/fisiologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Inflamação/metabolismo , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Receptores de Interleucina-17/metabolismo
13.
Quant Biol ; 6(3): 228-238, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31098334

RESUMO

BACKGROUND: Our understanding of post-transcriptional gene regulation has increased exponentially with the development of robust methods to define protein-RNA interactions across the transcriptome. In this review, we highlight the evolution and successful applications of crosslinking and immunoprecipitation (CLIP) methods to interrogate protein-RNA interactions in a transcriptome-wide manner. RESULTS: Here, we survey the vast array of in vitro and in vivo approaches used to identify protein-RNA interactions, including but not limited to electrophoretic mobility shift assays, systematic evolution of ligands by exponential enrichment (SELEX), and RIP-seq. We particularly emphasize the advancement of CLIP technologies, and detail protocol improvements and computational tools used to analyze the output data. Importantly, we discuss how profiling protein-RNA interactions can delineate biological functions including splicing regulation, alternative polyadenylation, cytoplasmic decay substrates, and miRNA targets. CONCLUSIONS: In summary, this review summarizes the benefits of characterizing RNA-protein networks to further understand the regulation of gene expression and disease pathogenesis. Our review comments on how future CLIP technologies can be adapted to address outstanding questions related to many aspects of RNA metabolism and further advance our understanding of RNA biology.

14.
Cell Rep ; 19(12): 2598-2612, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636946

RESUMO

Alternative splicing has essential roles in development. Remarkably, spermatogenic cells express more alternatively spliced RNAs compared to most whole tissues; however, regulation of these RNAs remains unclear. Here, we characterize the alternative splicing landscape during spermatogenesis and reveal an essential function for the RNA-binding protein Ptbp2 in this highly regulated developmental program. We found that Ptbp2 controls a network of genes involved in cell adhesion, migration, and polarity, suggesting that splicing regulation by Ptbp2 is critical for germ cell communication with Sertoli cells (multifunctional somatic cells necessary for spermatogenesis). Indeed, Ptbp2 ablation in germ cells resulted in disorganization of the filamentous actin (F-actin) cytoskeleton in Sertoli cells, indicating that alternative splicing regulation is necessary for cellular crosstalk during germ cell development. Collectively, the data delineate an alternative splicing regulatory network essential for spermatogenesis, the splicing factor that controls it, and its biological importance in germ-Sertoli communication.


Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Espermatogênese , Espermatozoides/fisiologia , Animais , Comunicação Celular , Polaridade Celular , Éxons , Feminino , Ontologia Genética , Masculino , Meiose , Camundongos Endogâmicos C57BL , Células de Sertoli/fisiologia , Células de Sertoli/ultraestrutura
15.
Adv Exp Med Biol ; 907: 123-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27256385

RESUMO

Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/fisiologia , RNA/genética , Espermatogênese/fisiologia , Animais , Humanos , Masculino , Meiose , Camundongos , Biossíntese de Proteínas , RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células de Sertoli/fisiologia , Especificidade da Espécie , Testículo/embriologia
16.
Mol Cell Biol ; 35(23): 4030-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391954

RESUMO

RNA binding proteins (RBPs) are increasingly recognized as essential factors in tissue development and homeostasis. The polypyrimidine tract binding (PTB) protein family of RBPs are important posttranscriptional regulators of gene expression. In the nervous system, the function and importance of PTB protein 2 (Ptbp2) as a key alternative splicing regulator is well established. Ptbp2 is also abundantly expressed during spermatogenesis, but its role in this developmental program has not been explored. Additionally, the importance of alternative splicing regulation in spermatogenesis is unclear. Here, we demonstrate that Ptbp2 is essential for spermatogenesis. We also describe an improved dual fluorescence flow cytometry strategy to discriminate, quantify, and collect germ cells in different stages of development. Using this approach, in combination with traditional histological methods, we show that Ptbp2 ablation results in germ cell loss due to increased apoptosis of meiotic spermatocytes and postmeiotic arrest of spermatid differentiation. Furthermore, we show that Ptbp2 is required for alternative splicing regulation in the testis, as in brain. Strikingly, not all of the alternatively spliced RNAs examined were sensitive to Ptbp2 loss in both tissues. Collectively, the data provide evidence for an important role for alternative splicing regulation in germ cell development and a central role for Ptbp2 in this process.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Espermatogênese , Espermatozoides/citologia , Processamento Alternativo , Animais , Células Cultivadas , Feminino , Deleção de Genes , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo
17.
Biochemistry ; 53(37): 5831-3, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25204418

RESUMO

Mounting evidence points to roles for miRNA gene regulation in promoting development, function, and cell survival in the mammalian retina. However, little is known regarding which retinal genes are targets of miRNAs. Here, we employed a systematic, nonbiased, biochemical approach to identify targets of miRNA gene regulation in the bovine retina, a common model species for vision research. Using Argonaute high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation analysis, we identified 348 high-confidence miRNA target sites within 261 genes. This list was enriched in rod and cone photoreceptor genes and included 28 retinal disease genes, providing further evidence of a role of miRNAs in the pathology of blinding diseases.


Assuntos
Proteínas Argonautas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , MicroRNAs/genética , Retina/fisiologia , Animais , Bovinos , Regulação da Expressão Gênica
18.
Methods Mol Biol ; 1125: 3-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24590775

RESUMO

The polyadenosine (polyA) "tail" is an essential feature at the 3' end of nearly all eukaryotic mRNAs. This appendage has roles in many steps in the gene expression pathway and is subject to extensive regulation. Selection of alternative sites for polyA tail addition is a widely used mechanism to generate alternative mRNAs with distinct 3'UTRs that can be subject to distinct forms of posttranscriptional control. One such type of regulation includes cytoplasmic lengthening and shortening of the polyA tail, which is coupled to changes in mRNA translation and decay. Here we present a general overview of 3' end formation in the nucleus and regulation of the polyA tail in the cytoplasm, with an emphasis on the diverse roles of 3' end regulation in the control of gene expression in different biological systems.


Assuntos
Regiões 3' não Traduzidas/genética , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , Adenosina/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Polímeros/metabolismo
19.
Genes Dev ; 26(14): 1626-42, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802532

RESUMO

Two polypyrimidine tract RNA-binding proteins (PTBs), one near-ubiquitously expressed (Ptbp1) and another highly tissue-restricted (Ptbp2), regulate RNA in interrelated but incompletely understood ways. Ptbp1, a splicing regulator, is replaced in the brain and differentiated neuronal cell lines by Ptbp2. To define the roles of Ptbp2 in the nervous system, we generated two independent Ptbp2-null strains, unexpectedly revealing that Ptbp2 is expressed in neuronal progenitors and is essential for postnatal survival. A HITS-CLIP (high-throughput sequencing cross-linking immunoprecipitation)-generated map of reproducible Ptbp2-RNA interactions in the developing mouse neocortex, combined with results from splicing-sensitive microarrays, demonstrated that the major action of Ptbp2 is to inhibit adult-specific alternative exons by binding pyrimidine-rich sequences upstream of and/or within them. These regulated exons are present in mRNAs encoding proteins associated with control of cell fate, proliferation, and the actin cytoskeleton, suggesting a role for Ptbp2 in neurogenesis. Indeed, neuronal progenitors in the Ptbp2-null brain exhibited an aberrant polarity and were associated with regions of premature neurogenesis and reduced progenitor pools. Thus, Ptbp2 inhibition of a discrete set of adult neuronal exons underlies early brain development prior to neuronal differentiation and is essential for postnatal survival.


Assuntos
Processamento Alternativo/fisiologia , Encéfalo/embriologia , Diferenciação Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mensageiro/metabolismo , Animais , Encéfalo/metabolismo , Éxons/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética
20.
Cell ; 146(2): 247-61, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784246

RESUMO

FMRP loss of function causes Fragile X syndrome (FXS) and autistic features. FMRP is a polyribosome-associated neuronal RNA-binding protein, suggesting that it plays a key role in regulating neuronal translation, but there has been little consensus regarding either its RNA targets or mechanism of action. Here, we use high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify FMRP interactions with mouse brain polyribosomal mRNAs. FMRP interacts with the coding region of transcripts encoding pre- and postsynaptic proteins and transcripts implicated in autism spectrum disorders (ASD). We developed a brain polyribosome-programmed translation system, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs. Our results suggest that loss of a translational brake on the synthesis of a subset of synaptic proteins contributes to FXS. In addition, they provide insight into the molecular basis of the cognitive and allied defects in FXS and ASD and suggest multiple targets for clinical intervention.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ribossomos/metabolismo , Sinapses/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...